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Abstract
In a class of potentials U(x) = A(A cosh2 x − cosh x − 2A)(1 + A cosh x)−2

the ground level is E = 0, and the corresponding wavefunction is known
exactly. This excitation is a manifestation of broken translation symmetry in
one-dimensional, nonlinear models with a symmetric double-Morse potential.
Broken translation symmetry in a one-dimensional model with an asymmetric
double-Morse potential results in an exotic class of double-well potentials with
exactly determined first excited level. Such a property, exact determination
of ground or first excited level in some classes of potentials, is common
for one-dimensional models with, respectively, corresponding symmetric or
asymmetric double-well potentials.

PACS numbers: 03.65.-w,52.35.Mw

The inherent feature of one-dimensional nonlinear models with symmetric double-well
potentials is the presence of kinks (localized energy excitations). Kinks, the topological
excitations, are stable solutions of the equation of motion and their presence breaks continuous
translation symmetry. Broken continuous internal symmetry is accompanied by the gapless
Goldstone boson. That is not the case here, where the broken symmetry is continuous but is
not internal. In consequence, instead of a gapless mode, there appears an isolated zero-energy
pseudo-Goldstone excitation restoring the broken symmetry [1]. This pseudo-Goldstone
excitation is the ground state of the corresponding ‘secondary potential’. Let us illustrate
this situation in the case of a 1D model defined by the Lagrangian

L =
∫ ∞

−∞

[
u̇2

2
− u′2

2
− V (u)

]
dx (1)

with the double-Morse potential (see e.g. [2])

V (u) ≡ VDM(u) = 1

2(1 − A2)
(A cosh u − 1)2 . (2)
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The kink solution of the equation of motion,

utt − uxx + V ′
DM(u) = 0 (3)

where prime denotes differentiation with respect to the argument of V , in this case takes the
form

uK(x, t) = 2arctanh

[√
1 − A

1 + A
tanh

(
x − vt

2
√

1 − v2

)]
.

The analysis of the kink’s stability in its rest frame

u(x, t) = uK(x) + δu(x)eiωt

leads to the Schrödinger equation,

− d2

dx2
δu(x) + U(x)δu(x) = ω2δu(x) (4)

with the ‘secondary potential’

U(x) ≡ V ′′
DM (uK(x)) = A

A cosh2 x − cosh x − 2A

(1 + A cosh x)2
. (5)

The energy of the kink solution is translation-invariant; i.e. a small shift of the kink’s position

uK(x + ε) = uK(x) + εu′
K(x)

leaves the energy unchanged. But the kink’s placement breaks this translation symmetry
resulting in a pseudo-Goldstone excitation—the zero-energy eigenvalue of the secondary
potential (5)

ω2
0 = 0

corresponding to the eigenfunction

δu0(x) = u′
K(x).

It is a common feature of all the generic symmetric double-well potentials, V (u), that the
secondary potential corresponding to the kink’s solution of the 1D model (1)∫

du√
2V (u)

= x − x0

has the ground state

E0 = 0

with corresponding eigenfunction

η0(x) = u′
K(x)

(the symmetric double-well potential is chosen in such a way that its minima are equal to
zero). The situation changes when the local symmetric double-well potential is replaced
by a local asymmetric double-well potential [3] (see figure 1). There exists a bell-shaped,
localized energy solution of the equation of motion for the 1D model. Such a solution is not
the topological one and obviously is not a stable one, though it may be long-lived in systems
where asymmetry is, in a sense, small [4, 5]. The translation symmetry is preserved in such
a system but the presence of the bell shape itself breaks this symmetry resulting in a pseudo-
Goldstone excitation restoring the lost symmetry. The corresponding secondary potential in
the simplest case takes the shape of a double well, and at least one level of that potential, the
zero-energy level, and the related eigenfunction are known exactly. Because this eigenfunction
has one node it must correspond to the first excited level. In consequence, there must exist
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Figure 1. The asymmetric potential for A = 0.7, D = 0.02.

a negative eigenvalue of the secondary potential, responsible for the fact that the bell-shaped
excitation is not a stable one. Let us illustrate the above description by using the 1D model (1)
with the asymmetric double-Morse (aDM) potential

VaDM = 1

1 − A2

[
1

2
(A cosh u − 1)2 + D sinh u

]
. (6)

The bell-shaped solution of the equation of motion (3) with the symmetric potential (2) replaced
by the asymmetric one (6) has the form

uBS(x, t) = 2 arctanh

[
z3 − 2η

β + (z2 − z1) cosh
√

ηF0(x−vt)√
1−v2

]

where z1 = tanh ui/2, with ui defined in figure 1, and

F0 = 1 + A2 − ε2

β = 2z3 − z2 − z1

η = (z3 − z1)(z3 − z2).

The analysis of the bell shape’s stability in its rest frame,

u(x, t) = uBS(x) + δu(x)eiωt

leads to the Schrödinger equation (4), with the ‘secondary potential’

U(x) ≡ V ′′ (uBS(x))

= 1

1 − A2

A − A2 − 2Dw − 6A2w2 + 2Dw3 − (A + A2)w4

(1 − w2)2

where

w = z3 − 2η

β + (z2 − z1) cosh
√

ηF0(x−vt)√
1−v2

< 1.

In spite of a complicated formula, this potential has a simple double-well form as shown in
figure 2.

As the bell-shaped solitary solution breaks the translation symmetry, there exists a zero-
energy eigenvalue of equation (4)

ωG(x) = 0
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Figure 2. The ‘secondary potential’ related to the asymmetric double-Morse potential for A = 0.7,
D = 0.002.

and the eigenfunction

δuG(x) = u′
BS(x)

related to the pseudo-Goldstone boson. In this case the eigenfunction has one node; it therefore
corresponds to the first excited level. A negative eigenvalue of the Schrödinger equation (4)
must exist here, responsible for the bell-shape instability.

It is a common feature of all 1D models (1) with the generic asymmetric double-well
potentials, V (u), that for the secondary potential

U(x) ≡ V ′′ (uBS(x))

built on the bell-shaped solution of the equation of motion (3)∫ u1

u0

du√
2[V (u) − V0]

= x − x0

(V0 being defined in figure 1), then the first excited level and the corresponding wavefunction
are known exactly, namely

E1 = 0

δu1(x) = u′
BS(x).

The ground level of the secondary potential is negative, being responsible for the instability
of the bell-shaped solitary wave. The interesting feature of this asymmetric generic potential
is that, introducing small asymmetry, one arrives at the long-lived bell shape and secondary
potential with two very close levels (‘tunnelling split’). Increasing asymmetry results in an
increasing distance between the two lowest levels, where the higher of them, the pseudo-
Goldstone excitation, becomes fixed, E = 0, and the lower one, responsible for the bell-shape
lifetime, becomes shifted towards greater negative values.
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